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Abstract
We study the most general form of a three-dimensional classical integrable
system with axial symmetry and invariant under the axis reflection. We assume
that the three constants of motion are the Hamiltonian, H, with the standard
form of a kinetic part plus a potential depending on the position only, the
z-component of the angular momentum, L, and a Hamiltonian-like constant,
H̃ , for which the kinetic part is quadratic in the momenta. We find the explicit
form of these potentials compatible with complete integrability. The classical
equations of motion, written in terms of two arbitrary potential functions, are
separated in oblate spheroidal coordinates. The quantization of such systems
leads to a set of two differential equations that can be presented in the form of
spheroidal wave equations.

PACS numbers: 02.30.Ik, 03.65.−w, 03.65.Fd

1. Motivation and introduction

This is a paper on integrability of three-dimensional systems, both classical and quantum.
Apart from being interesting by itself, this study can be extremely interesting for a field, which
is rather far away from the present subject, the theory of the continuous media: gas, fluid and
plasma. Those are mechanical systems with an infinite number of degrees of freedom and are
certainly much more difficult than the mechanics of a particle in three dimensions. However, in
the theory of continuous media, we can pose a problem of the existence of solitons: the steady
solution with time-independent field with density ρ(x) and velocities v(x). It could exist in
the non-dissipative case only, as we neglect the viscosity. In this latter case, the particles which
constitute the media should move in a self-consistent potential along its trajectories, which
should be closed. Although this potential is the result of interparticle interaction, each single
particle moves in an effective potential that provides the closed trajectory. From the analysis
of the equations of motion in continuous media [1], it follows that the simplest shape of the
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solution is a toroid. Thus, we have to look for a three-dimensional single-particle integrable
system including a toroidal shape. One of the goals of the present paper is to make a first step
in this direction, as we describe all completely integrable systems with axial symmetry.

A complete integrability of systems with axial symmetry is achieved if we found two
independent Hamiltonians, which commute with the component of the angular momentum
along the symmetry axis and also among themselves. Our Hamiltonians have a kinetic part
which is quadratic on the components of positions and momenta, plus a potential depending
solely on the position.

First, we study this situation classically, where the commutation rule for observables is
given by the vanishing of the Poisson bracket for these observables. Our first goal is to obtain
the most general form of the potentials for the Hamiltonians under the just described conditions.
In section 2, we arrive at the conclusion that these potentials should have very simple general
respective forms in terms of the oblate spheroidal coordinates and two undetermined functions,
one of each coordinate.

In terms of these coordinates, complete integration is now possible. We can show that the
Hamilton–Jacobi characteristic function is now separable, i.e., it can be written as a sum of
three functions each one in one variable. The expression for the characteristic function permits
us to write the equations of motion on a form that depends on the choice of the undetermined
functions. We describe these procedures in section 3. In this sense, we have found a general
solution for this problem as treated classically.

We can also treat it from the point of view of quantum mechanics. We transform the
classical Hamiltonian into quantum operators by making use of canonical quantization. Since
the kinetic parts of the Hamiltonians are quadratic in positions and momenta, they give rise
to self-adjoint operators and then, self-adjointness of these Hamiltonians can be studied for
particular cases by using Kato–Rellich-type theorems [12]. In our analysis, we have studied
the Schrödinger equations that correspond to both Hamiltonians for our particular choice of
the undetermined functions. These Schrödinger equations become spheroidal wave equations,
under a convenient change of variables. Spheroidal wave equations have been studied in the
classical literature [5]. In section 5, we discuss their solutions.

Concrete examples and models of physical interest of the applicability of this method are
under study.

2. The axial coordinates

Let us consider a three-dimensional classical system with the canonical coordinates
(pi, xi), i = 1, 2, 3, where the commutators are defined by the usual Poisson brackets
{A,B} = ∂A

∂pk

∂B
∂xk

− ∂A
∂xk

∂B
∂pk

, the sum being understood over repeated indices. The evolution of
the system is described by the Hamiltonian

H = p2

2m
+ U(x), x = (x1, x2, x3), p = (p1, p2, p3), (2.1)

where U(x) is a potential term. Let us assume the existence of two additional integrals of
motion for this system, all of them in involution. The first one will be chosen as the angular
momentum along the direction fixed by the unit vector n = (n1, n2, n3):

L = n · (x × p). (2.2)

As for the second one we require to be quadratic in momentum and commuting with both, H
and L. Then, it is straightforward to show that, provided we include also the reflection with
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respect to the n-axis as a discrete symmetry of our system, it must take the general expression
for which the method for its derivation will be explained below:

H̃ = 1

2m
pig

ik(x)pk + �(x), (2.3)

where the quadratic term has the ‘metric’

gik(x) = δik(x · n)2 − x · n(xink + xkni) + (x2 − a2)nink, (2.4)

with a2 being a real constant that we take positive. The quadratic term in the momenta can be
written as

1

2m

(
L2

⊥ − a2pn
2
)
, (2.5)

where L⊥ is the perpendicular component of L to the n-axis, and pn = p · n. Here we must
point out that the operators (2.2) and (2.5) determine the prolate–oblate spheroidal coordinates
that separate the Laplacian operator [9].

In order to obtain (2.3) and (2.4), we make the following considerations: first of all, we
assume that the kinetic term in (2.3) given by T := (pig

ik(x)pk)/(2m) is quadratic in pk ,
which are the components of the momentum. Then, let us first assume that the symmetry axis
is the z axis. A constant of motion is the L3, i.e., the component of the angular momentum in
the direction of this axis. The quadratic terms on xi and pk that commute with L3 are{

L2
1 + L2

2, L3
} = 0,

{
p2

1 + p2
2, L3

} = 0,
{
p2

3, L3
} = 0

and

{L1p1 + L2p2, L3} = 0.

Invariance with respect to reflections with respect to the origin in the direction of the z axis
excludes this last term, L1p1 + L2p2, so that the kinetic term T should be a linear combination
of L2

1 +L2
2 (or equivalently L2 −L2

3), p2
1 +p2

2 and p2
3 (or equivalently, p2 and p2

3). If we exclude
the trivial free particle contribution p2, we conclude that T should be a linear combination of
L2 − L2

3 and p2
3.

Finally, if we replace this symmetry axis by an arbitrary axis in the direction of the unit
vector n := (nx, ny, nz), we arrive at the same result provided that we replace L3 by L · n
and p3 by p · n. Then, after a cumbersome but straightforward calculation, we obtain T in the
desired form. Note that the constant a2 in (2.4) comes from the linear combination. Also,
the quadratic dependence on x in the kinetic term in (2.3) comes solely from the contribution
of the angular momentum to this quadratic term. Note that this quadratic dependence on the
position coordinates comes after calculation and it is not a working hypothesis.

The commutation of L with H and H̃ restricts the form of their potential terms

U(x) = U(x2, (x · n)2), �(x) = �(x2, (x · n)2) (2.6)

while the commutation of H and H̃ leads to the equations

∂i�(x) = gik(x)∂kU(x). (2.7)

In order to deal with (2.7) we diagonalize the matrix gik(x). Its eigenvalues λ(x) and
eigenvectors A(x) are obtained from the matrix equation

(gik(x) − λ(x)δik)Ak(x) = 0. (2.8)

We get the solutions

λ±(x) = x2 − a2

2
±

√(
x2 − a2

2

)2

+ a2(x · n)2, λ0(x) = (x · n)2. (2.9)
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The corresponding eigenvectors can be expressed in the following way:

A+
i (x) = ∂iλ−(x), A−

i (x) = ∂iλ+(x), A0
i (x) = n × x

x2 − (x · n)2
= ∂iϕ(x), (2.10)

where ϕ is the azimutal angle around the n-axis. Let us write here some useful identities of
these eigenvalue functions for future calculations,

(∂iλ+)
2 = 4λ+

λ+ − λ−
(λ+ + a2)

(∂iλ−)2 = − 4λ−
λ+ − λ−

(λ− + a2)

(∂iλ0)
2 = − 4

a2
λ+λ−.

(2.11)

Since the eigenvectors (2.10) are orthogonal, it is natural to adopt as new orthogonal
coordinates the set {λ+(x), λ−(x), ϕ(x)}, which are essentially the oblate spheroidal
coordinates [9]. We turn to equation (2.7) for the potentials, now expressed in the new
coordinate system. Taking into account that due to the geometric symmetry, L (2.2), U and �

do not depend on ϕ, (2.7) becomes

∂iλ+∂+� + ∂iλ−∂−� = gik (∂kλ+∂+U + ∂kλ−∂−U) , (2.12)

where ∂± stand for ∂
∂λ±

. Now, as gik is diagonal in the new coordinate basis {∇λ−,∇λ+,∇ϕ},
this equation decouples in

∂+� = λ−∂+U, ∂−� = λ+∂−U (2.13)

or

∂+(� − λ−U) = 0, ∂−(� − λ+U) = 0. (2.14)

This means that

� − λ+U = −f (λ+), � − λ−U = −g(λ−), (2.15)

where f (λ+) and g(λ−) are arbitrary functions. The minus sign in the front of (2.15) intends
that the next equations, derived from (2.15), can be written in a symmetric form with respect
to the variables λ+ and λ−. These equations give an expression for the potentials as follows:

U = f (λ+) − g(λ−)

λ+ − λ−
, � = λ−

λ+ − λ−
f (λ+) − λ+

λ+ − λ−
g(λ−). (2.16)

These are the most general expressions for the potentials U(x) and �(x) compatible with
{H, H̃ } = 0.

3. Separation of variables

3.1. The momentum as a gradient

Now we will recall here a property for a classical system in three dimensions having three
integrals of motion (including the Hamiltonian) hi, i = 1, 2, 3, in involution, thus being
integrable:

hi(p, x) = ei, i = 1, 2, 3 (3.1)

{hi, hj } ≡ ∂hi

∂pk

∂hj

∂xk

− ∂hi

∂xk

∂hj

∂pk

= 0, ∀ i, j . (3.2)
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If we assume that the determinant of the matrix
(

∂hi

∂pk

)
is nonvanishing, the inverse function

theorem gives from (3.1) the expression of the momenta as functions of coordinates, at least
locally:

pi = fi(x, e) (3.3)

so that

hi(f(x, e), x) = ei . (3.4)

Taking partial derivatives of this equation, we obtain

∂hi

∂pk

∂fk

∂xl

+
∂hi

∂xl

= 0 �⇒ (3.5)

∂hi

∂pk

∂fk

∂xl

∂hm

∂pl

= −∂hi

∂xl

∂hm

∂pl

= −∂hm

∂xl

∂hi

∂pl

�⇒ (3.6)

∂hi

∂pk

∂fk

∂xl

∂hm

∂pl

+
∂hi

∂pk

∂hm

∂xk

= 0. (3.7)

Note that the second identity in (3.6) comes after condition (3.2). According to our hypothesis,
the determinant of the matrix

(
∂hi

∂pk

)
is nonvanishing, so that the last relation can be simplified:

∂fk

∂xl

∂hm

∂pl

+
∂hm

∂xk

= 0. (3.8)

From (3.5) and (3.8) we have

∂hm

∂pl

(
∂fk

∂xl

− ∂fl

∂xk

)
= 0 (3.9)

hence

∂fk

∂xl

= ∂fl

∂xk

. (3.10)

This means that the vector field, in the variable x, f(x, e), has vanishing rotational, i.e.,

rotxf(x, e) = 0. (3.11)

Therefore, if f(x, e) is sufficiently regular, there exists a function F(x, e), locally defined, such
that

fl = ∂F (x, e)
∂xl

i.e. gradxF(x, e) = f(x, e). (3.12)

In conclusion, we have shown that if there are three integrals of motion (3.1) in involution,
the momentum will be the gradient of the function F:

pl = ∂F (x, e)
∂xl

. (3.13)

These could be considered as a first class constraints. The function F is the characteristic
function in the Hamilton–Jacobi approach. Note that this is a general property, valid for any
dimension n.
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3.2. The separation of F

We can apply the above results to our system by making the identification h1 = H,h2 =
L, h3 = H̃ . The next step is to show the separability of the function F in the variables {λ±, ϕ}
introduced in the previous section. Then, if we apply the chain rule to (3.12) and make use of
(2.10), we have

p = ∇λ+∂+F(λ+, λ−, ϕ) + ∇λ−∂−F(λ+, λ−, ϕ) +
n × x

x2 − (x · n)2
∂ϕF (λ+, λ−, ϕ). (3.14)

Since the vector fields in (2.10) are mutually orthogonal, multiplying both sides of the above
expression by n × x, we obtain

(n × x) · p = n · L = � = ∂ϕF (λ+, λ−, ϕ), (3.15)

where � is the value of the integral of motion L corresponding to the angular momentum
around n. We conclude that

p = ∇λ+∂+F(λ+, λ−, ϕ) + ∇λ−∂−F(λ+, λ−, ϕ) +
n × x

x2 − (x · n)2
� (3.16)

and therefore taking the square modulus in (3.16), we have that

p2 = (∇λ+)
2(∂+F)2 + (∇λ−)2(∂−F)2 +

�2

x2 − (x · n)2
= 2m (E − U) , (3.17)

where E is the value of the constant of motion H. We recall that the expression (3.16) for the
momentum vector field has been obtained in the basis that diagonalizes the metric matrix of
components {gik}. In this basis and from (3.16), we straightforwardly compute

pig
ikpk = λ−(∇λ+)

2(∂+F)2 + λ+(∇λ−)2(∂−F)2 +
(x · n)2�2

x2 − (x · n)2
= 2m(Ẽ − �), (3.18)

where Ẽ is the value of H̃ .
Next, we multiply equation (3.17) by λ+, (3.18) by −1 and sum. Next we make the same

procedure with λ− instead. Finally, we get the following two expressions:
(∇λ+)

2(λ+ − λ−)(∂+F)2 = 2m(λ+(E − U) − (Ẽ − �)) − �2

x2 − (x · n)2
(λ+ − (x · n)2)

−(∇λ−)2(λ+− λ−)(∂−F)2 = 2m(λ−(E − U)− (Ẽ − �))− �2

x2 − (x · n)2
(λ−− (x · n)2).

(3.19)

Taking into account the definition (2.9) of λ±, the next formulae are easily obtained:

x2 − (x · n)2 = λ+ + λ− + a2 +
λ+λ−
a2

= 1

a2
(λ+ + a2)(λ− + a2)

λ+ − (x · n)2 = λ+ +
λ+λ−
a2

= λ+

a2
(λ− + a2)

λ− − (x · n)2 = λ− +
λ+λ−
a2

= λ−
a2

(λ+ + a2)

(λ+ − λ−)(∇λ+)
2 = 4λ+(λ+ + a2)

(λ+ − λ−)(∇λ−)2 = −4λ−(λ− + a2).

(3.20)

Then, we carry (3.20) into (3.19) to get

4λ+(λ+ + a2)(∂+F)2 = 2m(λ+(E − U) − (Ẽ − �)) − λ+�
2

λ+ + a2

4λ−(λ− + a2)(∂−F)2 = 2m(λ−(E − U) − (Ẽ − �)) − λ−�2

λ− + a2
.

(3.21)
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We finally have

(∂+F)2 = 1

4λ+(λ+ + a2)

{
2m(λ+(E − U) − (Ẽ − �)) − λ+�

2

λ+ + a2

}
(∂−F)2 = 1

4λ−(λ− + a2)

{
2m(λ−(E − U) − (Ẽ − �)) − λ−�2

λ− + a2

}
.

(3.22)

Now, let us observe that in the right-hand side of (3.22) the combination λ+(E −U)− (Ẽ −�)

cannot depend on λ−. At the same time, λ−(E − U) − (Ẽ − �) will not depend on λ+. Note
that a similar behavior have arosen in (2.14). Hence, since ∂+F and ∂−F depends only on λ+

and λ−, respectively, while the dependence on ϕ was given by (3.15), we conclude that we
have managed to obtain the separation of F in the variables λ±, ϕ, i.e.,

F(λ+, λ−, ϕ) = A(λ+) + B(λ−) + �ϕ. (3.23)

Later, we shall find an explicit form for F in terms of a different set of variables.

3.3. The integration of the equations of motion

Our next objective is the integration of the following equations of motion:

pi = ∂iF (x). (3.24)

In other words, our goal is finding the explicit dependence of the variables λ± and ϕ with time,
i.e., the functions λ± = λ±(t) and ϕ = ϕ(t). From (3.22) and (3.23), it is clear that

(∂+A(λ+))
2 = P(x, λ+) (∂−B(λ−))2 = P(x, λ−), (3.25)

where we are using the shorthand notation

P(x, λ±) = 1

4λ±(λ± + a2)

{
2m(λ±(E − U(x)) − (Ẽ − �(x))) − �2λ±

λ± + a2

}
. (3.26)

The chain rule along p = mẋ and (3.24) gives us

λ̇+ = ∂iλ+ẋi = 1

m
∂iλ+pi = 1

m
∂iλ+∂iF

λ̇− = ∂iλ−ẋi = 1

m
∂iλ−pi = 1

m
∂iλ−∂iF

ϕ̇ = ∂iϕẋi = 1

x2 − (x · n)2

�

m
= 1

m
∂iϕ∂iF,

(3.27)

where the dot denotes time derivative, as usual. Therefore,

λ̇+ = 1

m
∂iλ+∂iF = 1

m
(∂iλ+)

2∂+A(λ+) = 1

m

4λ+

λ+ − λ−
(λ+ + a2)∂+A(λ+)

λ̇− = − 1

m

4λ−
λ+ − λ−

(λ− + a2)∂−B(λ−)

ϕ̇ = a2�

m

1

(λ+ + a2)(λ− + a2)
= a2�

m

1

λ+ − λ−

(
1

λ− + a2
− 1

λ+ + a2

)
.

(3.28)

From the first two equations in (3.28),
λ̇+

λ+∂+A(λ+)
= 1

m

4(λ+ + a2)

λ+ − λ−
λ̇−

λ−∂−B(λ−)
= − 1

m

4(λ− + a2)

λ+ − λ−
,

(3.29)
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we can get three expressions separated in λ+, λ− and ϕ:

λ̇+

λ+∂+A(λ+)
+

λ̇−
λ−∂−B(λ−)

= 4

m

λ̇+

λ+(λ+ + a2)∂+A(λ+)
+

λ̇−
λ−(λ− + a2)∂−B(λ−)

= 0

−�a2

(
λ̇+

4λ+(λ+ + a2)2∂+A(λ+)
+

λ̇−
4λ−(λ− + a2)2∂−B(λ−)

)
= ϕ̇.

(3.30)

If the potentials (2.16) are known, e.g., the functions f (λ+) and g(λ−) are chosen, then the
functions ∂+A(λ+) and ∂−B(λ−) will be also explicitly known. Thus, integrating over time
(3.30) we obtain the following crude expressions:

∫ λ+

0
dz

1

z∂zA(z)
+

∫ λ−

0
dz

1

z∂zB(z)
= 4

m
t + c1∫ λ+

0
dz

1

z(z + a2)∂zA(z)
+

∫ λ−

0
dz

1

z(z + a2)∂zB(z)
= c2

−�a2

(∫ λ+

0
dz

1

4z(z + a2)2∂zA(z)
+

∫ λ−

0
dz

1

4z(z + a2)2∂zB(z)

)
= ϕ + c3.

(3.31)

These relations constitute an implicit form of the integration of the equations of motion.
To obtain the coordinates λ+, λ− and ϕ as explicit functions of time we should invert such
relations, a task which is not often simple and that will depend on each particular choice of
the functions f (λ+) and g(λ−).

3.4. The function F in terms of oblate spheroidal coordinates

From definition (2.9) λ+ is always positive meanwhile the values of λ− lie on the interval
[−a2, 0] , depending on the scalar product x · n. Thus, we suggest the following change of
coordinates:

λ+ = a2 sinh2 α, λ− = −a2 sin2 β. (3.32)

Therefore we have

x = a cosh α sin β cos ϕ, y = a cosh α sin β sin ϕ, z = a sinh α cos β, (3.33)

where {α, β, ϕ} are the usual oblate spherical coordinates [5–9]. Here, we shall see how the
dependence of F in terms of α, β and ϕ gives a new insight into the above discussion. If we
take time derivative in (3.32), we obtain

λ̇+ = (2a2 sinh α cosh α)α̇, λ̇− = −(2a2 sin β cos β)β̇. (3.34)

From (3.32), one readily obtains

4λ+(λ+ + a2)

(
∂F

∂λ+

)2

=
(

∂F

∂α

)2

(3.35)

4λ−(λ− + a2)

(
∂F

∂λ−

)2

= −
(

∂F

∂β

)2

. (3.36)

Now, we compare the expressions given in (3.27) and (3.32) for λ̇+ and use (3.35) to conclude
that

α̇ = 1

m

1

sinh2 α + sin2 β

∂F

∂α
. (3.37)
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An analogous manipulation shows that

β̇ = 1

m

1

sinh2 α + sin2 β

∂F

∂β
. (3.38)

Using the last formula in (3.28) and (3.32), we find the expression for the time derivative of ϕ

as

ϕ̇ = �

ma2

1

sinh2 α + sin2 β

(
1

cos2 β
− 1

cosh α

)
. (3.39)

Since the functions f (·) and g(·) depend respectively on λ+ and λ− only, they can be written
as functions of α and β, respectively. As f (·) and g(·) are, in principle, arbitrary, we could
denote these functions as f (α) and g(β), respectively. Thus, (2.15) can be written as (except
for an irrelevant change on the sign)

� − a2(sinh2 α)U = f (α), � + a2(sin2 β)U = g(β). (3.40)

Then, (3.21) with (3.35)–(3.36) and (3.40) gives(
∂F

∂α

)2

= 2m[a2 sinh2 αE − Ẽ + f (α)] − �2 sinh2 α

cosh2 α
(3.41)

(
∂F

∂β

)2

= 2m[a2 sin2 βE + Ẽ − g(β)] − �2 sin2 β

cos2 β
, (3.42)

so that, we finally get the following expressions for the derivatives of α and β:

α̇ = 1

a2m

1

sinh2 α + sin2 β

[
2m[a2 sinh2 αE − Ẽ + f (α)] − �2 sinh2 α

cosh2 α

]1/2

= 1

a2m

1

sinh2 α + sin2 β

1/2

α (3.43)

β̇ = 1

a2m

1

sinh2 α + sin2 β

[
2m[a2 sin2 βE + Ẽ − g(β)] − �2 sin2 β

cos2 β

]1/2

= 1

a2m

1

sinh2 α + sin2 β



1/2
β , (3.44)

where obviously,


α = 2m[a2 sinh2 αE − Ẽ + f (α)] − �2 sinh2 α

cosh2 α
(3.45)


β = 2m[a2 sin2 βE + Ẽ − g(β)] − �2 sin2 β

cos2 β
. (3.46)

Clearly, after (3.43) and (3.44), we have

α̇



1/2
α

− β̇



1/2
β

= 0 �⇒
∫ α

0

dα



1/2
α

−
∫ β

0

dβ



1/2
β

= C2, (3.47)

where C2 is a constant with respect to time (obviously, it depends on α and β). Another
constant of motion can be obtained as follows: first, we write (3.39) as

ϕ̇ = �

ma2

1

sinh2 α + sin2 β

(
cos2 β + sin2 β

cos2 β
− cosh2 α − sinh2 α

cosh α

)
. (3.48)
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Then, using (3.43) and (3.44) in (3.48), we have

ϕ̇ = �

a2

(
β̇



1/2
β

sin2 β

cos2 β
+

α̇



1/2
α

sinh2 α

cosh2 α

)
. (3.49)

From (3.49), we obtain

d

dt

[
ϕ − �

a2

(∫
dα



1/2
α

sinh2 α

cosh2 α
+

∫
dβ



1/2
β

sin2 β

cos2 β

)]
= 0, (3.50)

which shows that

ϕ − �

a2

(∫
dα



1/2
α

sinh2 α

cosh2 α
+

∫
dβ



1/2
β

sin2 β

cos2 β

)
= C3 (3.51)

is a constant of motion.
Furthermore, from (3.43) and (3.44) we can obtain a third result as we show in what

follows:

α̇



1/2
α

sinh2 α +
β̇



1/2
β

sin2 β = 1

a2m

sinh2 α

sinh2 α + sin2 β
+

1

a2m

sin2 β

sinh2 α + sin2 β
= 1

m
, (3.52)

which obviously yields after integration∫
dα



1/2
α

sinh2 α +
∫

dβ



1/2
β

sin2 β = 1

a2m
t. (3.53)

The function F can now be written in terms of the variables (α, β, ϕ). Since λ+ and λ− are
functions of α and β alone, respectively, formula (3.23) can be written as

F(α, β, ϕ) = A(α) + B(β) + �ϕ, (3.54)

where

A(α) =
∫

∂F

∂α
dα, B(β) =

∫
∂F

∂β
dβ. (3.55)

This gives the final expression for F(α, β, ϕ) as

F(α, β, ϕ) =
∫


1/2
α dα +

∫



1/2
β dβ + �ϕ. (3.56)

Time invariants C2 and C3 can be written in terms of certain partial derivatives of F(α, β, ϕ)

as we can easily show. In fact, using the expressions for 

1/2
α and 


1/2
β in (3.45) and (3.46),

we have that

∂F

∂Ẽ
= −m2C2,

∂F

∂�
= C3,

∂F

∂E
= t, (3.57)

as it can be easily checked. Then, the function F can be written as

F ≡ Et − mẼC2 + �C3, (3.58)

where C2 and C3 are dependent on α, β and ϕ, but they are time independent.
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4. Quantum systems

From the point of view of quantum mechanics, the Hamiltonian H as well as the integrals of
motion L and H̃ are Hermitian operators obtained simply by replacing pk → −i∂k, k = 1, 2, 3,
in (2.1), (2.2) and (2.3), respectively (we have taken h̄ = 1 along this section). Formal
hermiticity follows from the fact that the operators H,L and H̃ are symmetric in the usual
Cartesian coordinates. The kinetic parts of H and H̃ are nonsingular quadratic expressions
on positions and momenta. This quadratic dependence assures that these kinetic terms are
represented by self-adjoint ([11]) operators. In addition, we assume that the potentials U(x)

and �(x) satisfy sufficient conditions so that both H and H̃ be self-adjoint (as for example
that the conditions in the Kato– Rellich theorem be satisfied [12]).

The conditions (2.4) on the metric g(x), and (2.6)–(2.7) on the potential terms U(x),�(x)

guarantee the commutation relations for these operators:

[H,L] = [H̃ , L] = [H, H̃ ] = 0. (4.1)

We will look for the simultaneous eigenfunctions ψ(x) of the three operators

(H − E)ψ = (H̃ − Ẽ)ψ = (L − �)ψ = 0 (4.2)

or equivalently

−
ψ(x) = 2m(E − U(x))ψ(x)

−
̃ψ(x) = 2m(Ẽ − �(x))ψ(x)

−i∂ϕψ(x) = �ψ(x),

(4.3)

where


 = ∂k∂k, 
̃ = ∂jg
jk(x)∂k. (4.4)

Now, we will express these differential operators in terms of the coordinates λ+, λ−, ϕ in order
to rewrite the eigen-equations in the form

− 1

λ+ − λ−

{[
4λ+(λ+ + a2)ψ++ + 2(a2 + 3λ+)ψ+ − a2

λ+ + a2
ψϕϕ

]
−

[
4λ−(λ− + a2)ψ−− + 2(a2 + 3λ−)ψ− − a2

λ− + a2
ψϕϕ

]}
= 2m(E − U)ψ

− λ−
λ+ − λ−

[
4λ+(λ+ + a2)ψ++ + 2(a2 + 3λ+)ψ+ +

λ+

λ+ + a2
ψϕϕ

]
+

λ+

λ+ − λ−

[
4λ+(λ+ + a2)ψ−− + 2(a2 + 3λ−)ψ− +

λ−
λ− + a2

ψϕϕ

]
= 2m(Ẽ − �)ψ.

(4.5)

Taking into account that

ψϕϕ = −�2ψ (4.6)

and also (2.14), equations (4.5) can be written in a separated form,

−
[

4λ+(λ+ + a2)ψ++ + 2(a2 + 3λ+)ψ+ − �2λ+

λ+ + a2
ψ

]
= 2m[(E − U)λ+ − (Ẽ − �)]ψ

−
[

4λ−(λ− + a2)ψ−− + 2(a2 + 3λ−)ψ− − �2λ−
λ− + a2

ψ

]
= 2m[(E − U)λ− − (Ẽ − �)]ψ,

‘ (4.7)
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where λ+ and λ− appear in the first and second equations in (4.7), respectively. Therefore we
can look for a factorized solution for the eigenfunctions as follows:

ψ(x) = ψ+(λ+)ψ
−(λ−) ei�ϕ. (4.8)

We can go back to the change of coordinates given by (3.32). This change of coordinates is
also suggested by the formulae below, as we shall see. Now, it is time for choosing explicit
forms for the functions f (x) and g(x) in (2.15). For f (x), we shall choose the function that
vanishes identically. For g(x), we choose g(λ−) := −Q(λ− + a2), where Q is a constant.
Then, the following expressions arise:

f (λ+) = � − λ+U = 0, g(λ−) = � − λ−U = −Q(λ− + a2)

U(x) = −Q
λ− + a2

λ+ − λ−
, �(x) = −Q

λ+(λ− + a2)

λ+ − λ−

. (4.9)

Or, in Cartesian coordinates,

U(x) = −Q

2

(
x2 + a2

[(x2 + a2)2 − 4a2(x2 − (x · n)2)]1/2
− 1

)
. (4.10)

Now, we carry (3.32) and (4.9) into (4.7) to get the following set of two differential equations
in the variables α and β:{

d2

dα2
+

sinh α

cosh α

d

dα
− sinh2 α

cosh2 α
�2 + 2m[Ea2 sinh2 α − Ẽ]

}
ψ+(α) = 0, (4.11){

d2

dβ2
− sin β

cos β

d

dβ
− sin2 β

cos2 β
�2 + 2m[Ea2 sin2 β + Ẽ + Qa2 cos2 β]

}
ψ−(β) = 0. (4.12)

This is a special type of equations already studied in the literature that we briefly analyze in
the next section. In figure 1 we depict three possible situations: f = 1, g = 0; f = 0, g = 1
and f = 1, g = 1 respectively from left to right and from above to below.

5. Study of the equations and their solutions

First of all, it seems convenient to simplify equations (4.11)–(4.12). In order to fulfil this goal,
let us choose the following new coordinates:

t = sinh α, u = sin β,
d

dα
=

√
t2 + 1

d

dt
,

d

dβ
=

√
1 − u2

d

du
. (5.1)

Let us introduce the following parameters:

E = 2ma2E, q = 2ma2Q, Ẽ = �2 + 2mẼ, (5.2)

then, equations (4.11)–(4.12) become respectively[
(t2 + 1)

d2

dt2
+ 2t

d

dt
+

�2

t2 + 1
+ E t2 − Ẽ

]
ψ+(t) = 0. (5.3)[

(1 − u2)
d2

du2
− 2u

d

du
− �2

1 − u2
+ Eu2 + q(1 − u2) + Ẽ

]
ψ−(u) = 0. (5.4)

We observe that in the case of E = q = 0 and only in this case, these equations can be
reduced to equations of hypergeometric type, which can be solved in terms of hypergeometric
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Figure 1. Iso-potential lines in the XZ-plane for three values of the parameters.

(This figure is in colour only in the electronic version)

functions. However, this is not the most general case, let us consider the following differential
equation:

(1 − z2)
d2w

dz2
− 2z

dw

dz
+

{
λ − µ2

1 − z2
+ γ 2(1 − z2)

}
w = 0, (5.5)

where λ,µ and γ 2 are real parameters (γ 2 may be positive or negative depending on the use of
prolate or oblate coordinates respectively). This is called the spheroidal wave equation [10].
It is very simple to show that both equations (5.3) and (5.4) are versions of the spheroidal
wave equation. In fact, (5.4) can be written as

(1 − u2)
d2ψ−(u)

du2
− 2u

dψ−(u)

du
+

{
G − �2

1 − u2
+ q ′(1 − u2)

}
ψ−(u) = 0, (5.6)

with G := Ẽ + E and q ′ = q − E . If we apply the change of variables given by t = iα,
equation (5.3) becomes

(1 − α2)
d2ψ+(α)

dα2
− 2α

dψ+(α)

dα
+

{
G − �2

1 − α2
− E(1 − α2)

}
ψ+(α), (5.7)

where again G = Ẽ + E and we have kept the notation ψ+(α) = ψ+(iα) = ψ+(t).
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Solutions of the spheroidal wave equation (5.5) and therefore of (5.6) and (5.7) have been
studied in [10]. The origin z = 0 is a regular point of the equation and therefore, we can find
two linearly independent functions in terms of power series on the variable z. These series
converge on the open circle centered at the origin and radius equal to one, since z = ±1
are singular points for the equation. On this open circle, one can find one even and one odd
solution of (5.5) of the form

∑∞
n=0 anz

2n and
∑∞

n=0 anz
2n+1 respectively, which are linearly

independent. These series do not converge at the singular points ±1. As they do converge on
the open interval (−1, 1), the wavefunction ψ−(β) solution of equation (4.12) is periodic on
the real axis with singularities at the points (2n + 1)π/2. There exists another type of linearly
independent even and odd solutions on the neighborhood of the origin that may converge at
the singular points ±1, provided that a relation is satisfied between the coefficients λ,µ and
γ in (5.5) (and its corresponding translation in terms of the coefficients in (5.6) and (5.7))
[10]. In any case, the solutions ψ−(β) of (4.12) on the real axis are periodic and therefore,
not square integrable.

With respect to equation (5.5), z = ±1 are regular singular points with indices
equal to ± 1

2µ = ± 1
2�. Being � an integer, the two linearly independent solutions on

the neighborhood of z = 1 are u1(z) and u2(z) with u1(z) = (z − 1)�/2F1(z − 1) and
u2(z) = u1(z) log(z − 1) + (z − 1)−�/2F2(z − 1), where F1(z − 1) and F2(z − 1) are power
series on z−1. These power series have radii of convergence equal to 2. On the neighborhood
of z = −1, similar solutions can be found. Power series never truncate.

There is another singular point at z = ∞. This singular point is irregular. Solutions on
the neighborhood of the infinite have the form zν

∑∞
n=−∞ anz

2n, where ν is a complex number
depending on the equation parameters. In order to simplify the recurrence relations for the
coefficients an, it is customary to choose this solution as (z2 − 1)µ/2zν−µ

∑∞
n=−∞ anz

2n . The
condition that the Laurent series converges in 1 < |z| < ∞ gives a relation between λ,µ, γ

and ν [10]. These solutions are of the form

(z2 − 1)µ/2zµ

∞∑
n=−∞

aµ
ν,nψ

(j)

ν+2n(γ z), j = 1, 2, 3, 4, (5.8)

where

ψ(j)
ν (z) =

(
π

2z

)1/2

Z(j)
ν (z), (5.9)

with Z(1)
ν (z) = Jν(z), Z

(2)
ν (z) = Yν(z), Z

(3)
ν (z) = H(1)

ν (z) and Z(4)
ν (z) = H(2)

ν (z), being
Jν(z), Yν(z) and H(i)

ν (z) the Bessel functions of first, second and third class, respectively. Any
two of the set of solutions (5.8) are linearly independent provided that ν be not a half odd
integer.

Solutions of (5.3) and (5.4) can be obtained without resorting to the standard study of the
spheroidal wavefunction. For instance, if we use the change of variables given by z := t2 in
(5.3), this equation is transformed into[

4z(z + 1)
d2

dz2
+ (6z + 2)

d

dz
+

�2

z + 1
+ Ez − Ẽ

]
ψ(z) = 0. (5.10)

Now, the singular regular points lie at z = 0,−1 and it is not difficult to obtain solutions
in the form of power series on the neighborhood of these points. For example, for z = 0
the characteristic exponents are 0 and 1/2 giving respective linearly independent solutions of
(5.10) of the form ψ0(z) = ∑∞

n=0 anz
n and ψ1/2(z) = ∑∞

n=0 bnz
n+ 1

2 . Recurrence relations
for the coefficients depend on four coefficients, except the first and second relations which
depend on the two and three first coefficients respectively (which is compatible with the
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fact that a0 and b0 should be the only independent coefficients). On the neighborhood of
the singular point z = −1, two linearly independent solutions can be found of the form
ψ1(z) = ∑∞

n=0 an(z + 1)n+�/2 and ψ2(z) = ψ1(z) log(z + 1) +
∑∞

n=0 bn(z + 1)n−�/2. These
series make sense provided that compatibility relations exist between the parameters �, E and
Ẽ in complete agreement with the general study of the solutions of spheroidal wavefunctions
in [10].

6. Conclusions and remarks

We have studied the conditions of integrability of a classical or quantum system having a
symmetry axis. As in a three-dimensional integrable system, we have found three independent
observables such that their respective Poisson brackets are zero, in the classical case, or
commute in the quantum case. The chosen symmetry forces one of the observables to be the
component of the angular momentum in the direction of the symmetry axis. The other two
can be written in the Hamiltonian form as a sum of a kinetic term plus a potential.

In the classical case, we have obtained the most general form of the potentials
corresponding to both Hamiltonians in terms of oblate spheroidal coordinates, that depend
on two arbitrary functions depending on one coordinate only. We have written the equations
of motion in terms of these coordinates and show that the Hamilton–Jacobi characteristic
function can be written as a sum of three functions each one depending on one coordinate
only. Then, we have obtained the explicit form for these three functions.

The quantum case is obtained by direct canonical quantization of the classical case. The
condition of integrability yields two Schrödiger-type equations with separate variables. Then,
a reasonable choice on the functions that determine the potentials yields new equations that
are shown to be of the spheroidal type. We finish the discussion with some comments on the
solutions of this kind of equations.
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